Retrieval-Augmented Few-shot Text Classification

Guoxin Yu^{1,2}, Lemao Liu^{3*}, Haiyun Jiang³, Shuming Shi³, Xiang Ao^{1,2*}

1 Key Lab of Intelligent Information Processing of Chinese Academy of Sciences, Institute of Computing Technology. **2** University of Chinese Academy of Sciences. **3** Tencent AI Lab, China.

Overfitting or

1 Motivation

- For few-shot text classification, training numerous parameters of PLMs on scarce data is prone to produce over-fitting and unstable generalization.
- Retrieval-based methods have shown the capability to incorporate retrieved memory alongside parameters for better generalization.

2 Challenges

- Retrieving examples from a narrow space to improve few-shot learning is still challenging due to limited training data.
- Static retrieval whose metric is not task-specific (BM25/TF-IDF) cannot be reliable for retrieving helpful samples for target prediction. $P_{\varphi}(z_j|x) = f_{retr}(x, z_j) = \sin(x, z_j)$
- Joint learning-based retrieval suffers from the gradient vanishing problem during the optimizing process, since its retrieval metric is updated towards the downstream task by minimizing the standard cross-entropy loss. py loss. $P_{\varphi}(z_j|x) = f_{retr}(x, z_j) = \frac{\exp(x \cdot z_j^{\mathrm{T}})}{\sum_{j=1}^{m} \exp(x \cdot z_j^{\mathrm{T}})}$ The gradient norm of the joint 🔲 Joint Learning EM-S steps 8.0 R-S learning-based retriever exceeds the threshold of 1e-6 for only about 40% of the steps. Ξ 0.6 -We aims to meet the challenge of weak supervision signals for the retriever and insufficient MNLI CR ONLI Figure 2: The proportion of steps in which the average data. gradient of retriever's all parameters is more than 1e-6.

Compared with conventional methods, retrieval methods in text classification could comprise an example retriever $f_{retr}(x, z_j)$ and a text classifier $f_{clf}(x \oplus z_j)$. $P(y|x) = \operatorname{softmax}(f_{clf}(x))$ \longrightarrow $P_{\theta,\varphi}(y|x) = \sum_{j=1}^{m} P_{\theta}(y|x, z_j) P_{\varphi}(z_j|x)$ $P_{\theta}(y|x, z_i) = \operatorname{softmax}(f_{clf}(x \oplus z_j))$ $P_{\varphi}(z_j|x) = f_{retr}(x, z_j)$

3 Method: Retrieval with EM-L and R-L

- **\square** EM-based Loss (EM-L) considers z_j as a latent variable and alternates between an E-step and a M-step until convergence.
 - The Expectation-step computes the conditional probabilities:

 $P_{A,a}(v|x,z_i)P_{a}(z_i|x)$

- **Ranking-based Loss (R-L) considers the process of retrieving** z_j as a ranking task.
 - R-L employs a ranking loss to enhance the consistency between $P_{\theta}(y|x, z_i)[y_i]$ and $P_{\varphi}(z_i|x)$ and provide more direct signals to the retriever.

$$P_{\theta,\varphi}(z_j|x,y) = \frac{\Gamma_{\theta,\varphi}(y|x,z_j)\Gamma_{\varphi}(z_j|x)}{\sum_{j=1}^m P_{\theta,\varphi}(y|x,z_j)P_{\varphi}(z_j|x)}$$

• The Maximization-step updates the parameters by maximizing the expected log-likelihood:

$$P_{\theta,\varphi}(y|x) = \sum_{j=1}^{m} P_{\theta,\varphi}(z_j|x,y) \cdot \log P_{\theta}(y|x,z_j)$$
$$\mathcal{L}oss_{em} = \sum_{i}^{n} \sum_{j}^{m} \left[P(z_j|x_i,y) \cdot \log P(y|x_i,z_j) \right] [c]$$
$$\theta_{i+1} = \arg \max_{\theta} P(z_j|x,y,\theta_i) \cdot \log P(y|x,z_i,\theta)$$

$$\mathcal{L}oss_{rank} = \sum_{i}^{n} \sum_{j}^{m} \max(P_{\theta}(y|x_{i}, z_{j})[y_{i}] - P_{\phi}(z_{j}, x_{i}) + \delta, 0)$$

$$\mathcal{L}oss_{cls} = -\sum_{i}^{n} \sum_{j}^{m} \log[P(z_{j}|x_{i}) \cdot P(y|x_{i}, z_{j})][y_{i}]$$

$$\mathcal{L}oss = \lambda \cdot \mathcal{L}oss_{rank} + \mathcal{L}oss_{cls}$$

$$\square \text{ Both of EM-L and R-L aim to retrieve examples from a limited space more effectively and prioritize more beneficial examples for$$

downstream tasks.

4 Experiment

- Retrieving examples from the training set is effective in few-shot scenarios.
- EM-L and R-L approaches train the retriever more effectively than static retrieval and joint learning-based retrieval.
- □ The advantages of EM-L and R-L are more pronounced on

5 Analysis

Higher Kendall's \u03c6' of EM-L and R-L in 16-shot and 8-shot text classification indicates that they could prioritize more helpful examples according to their corresponding metrics.

						. Accur
Kendall's $ au'$	SST-2	CR	QQP	QNLI	RES	Vanil
Static	0.5344	0.5837	0.4307	0.5312	0.47857	Static
Joint	0.5413	0.6129	0.4776	0.5937	0.4732	Joint
EM-L	<u>0.6853</u>	<u>0.6451</u>	0.6265	0.7500	0.6598	EM-L
R-L	0.7442	0.6562	<u>0.6057</u>	<u>0.7185</u>	<u>0.6125</u>	R-L

Accuracy S	SST-2	MR	TREC	QQP
Vanilla Static	80.22	$60.71 \\ 67.51$	86.05 86.94	64.27

challenging tasks, such as QQP, QNLI, and LAP.

Model	Single Sentence			Sentence Pair			ABSA		Avg.		
	SST-2	MR	CR	TREC	QQP	QNLI	MNLI	SNLI	RES	LAP]
	Prompt Learning with RoBerta-Large										
Vanilla	84.84(6.80)	$77.88_{(7.90)}$	$88.36_{(2.89)}$	$87.20_{(7.70)}$	$67.09_{(6.70)}$	$64.25_{(7.45)}$	$60.69_{(4.08)}$	$64.56_{(4.08)}$	$72.05_{(4.08)}$	$71.81_{(2.88)}$	73.87
Static	88.60(4.10)	$83.67_{(6.80)}$	$87.06_{(3.84)}$	$90.95_{(1.36)}$	$68.31_{(7.70)}$	$66.27_{(4.98)}$	$60.38_{(6.70)}$	$68.17_{(5.62)}$	$70.95_{(5.46)}$	$73.01_{(3.03)}$	75.74
Joint	$90.71_{(1.20)}$	$85.83_{(2.40)}$	$86.76_{(6.50)}$	$90.57_{(4.17)}$	$67.26_{(4.40)}$	$63.15_{(7.16)}$	$61.95_{(4.65)}$	$67.64_{(5.80)}$	$71.07_{(2.97)}$	$73.32_{(2.26)}$	75.83
EM-L	<u>91.31</u> (1.30)	<u>87.58</u> (1.40)	90.00 (0.90)	<u>92.13</u> (1.41)	74.41 (0.74)	67.66 (3.77)	<u>64.85</u> (3.21)	<u>69.52</u> (3.69)	73.74(3.46)	76.02 (1.90)	<u>78.72</u>
R-L	91.58 (1.30)	87.47 (0.09)	<u>89.93</u> (1.70)	92.86 (1.21)	<u>73.79</u> (2.28)	<u>67.62</u> (5.79)	66.04 (3.18)	73.08 (4.59)	76.79 (2.60)	<u>75.59</u> (1.51)	79.46
Fine-tune RoBerta-Large											
Vanilla	$81.59_{(4.50)}$	$73.59_{(9.90)}$	$81.63_{(4.08)}$	$85.95_{(5.57)}$	$61.42_{(8.19)}$	$57.20_{(2.09)}$	$59.90_{(5.72)}$	$59.19_{(5.58)}$	$69.21_{(4.14)}$	$71.06_{(5.11)}$	70.07
Static	$81.99_{(10.8)}$	$72.69_{(5.05)}$	$82.75_{(5.50)}$	$87.02_{(3.25)}$	$60.23_{(9.60)}$	$57.11_{(3.90)}$	$54.69_{(4.78)}$	$62.65_{(5.10)}$	$70.48_{(8.74)}$	$71.37_{(3.03)}$	70.10
Joint	$83.49_{(3.20)}$	$74.89_{(2.90)}$	$80.63_{(5.42)}$	$86.33_{(3.17)}$	$63.50_{(8.08)}$	$57.66_{(2.69)}$	$60.99_{(4.98)}$	$61.01_{(5.80)}$	$70.23_{(3.57)}$	$70.62_{(4.47)}$	70.94
EM-L	85.38(1.30)	75.80 (2.20)	83.81 (5.36)	89.36 (2.64)	<u>65.70</u> (8.17)	<u>60.93</u> (1.56)	62.24 (3.12)	<u>65.25</u> (3.20)	<u>71.64</u> (3.36)	72.69 (3.18)	<u>73.27</u>
R-L	<u>84.69</u> (2.29)	<u>75.35</u> (2.20)	<u>83.17(3.22)</u>	<u>88.92</u> (3.81)	70.53 (2.68)	61.37 _(0.12)	$\underline{62.18}_{(1.72)}$	66.31 _(3.30)	73.28 (3.13)	72.69 (3.01)	73.85
Fable 1. Comparison results on 16-shot text classification "Vanilla" denotes methods without retrieval which only											

Table 1: Comparison results on 16-*shot* text classification. "Vanilla" denotes methods without retrieval, which only consists of a sentence encoder and a classifier. "Static" and "Joint" are static retrieval and joint learning-based retrieval, which are introduced in §2. "EM-L" and "R-L" are methods implemented with our proposed new objectives. All the reported results are average *Accuracy* and the standard deviation in the subscript.

Joint	85.41	(1.01)	80.57	61.92
EM-L	<u>87.30</u>	78.75	<u>87.52</u>	67.90
R-L	89.79	<u>77.38</u>	88.78	<u>66.77</u>

Table 2: *Kendall's* τ' of $P_{\phi}(\mathbf{z}_j | \mathbf{x}_i)$ and $P_{\theta}(y | \mathbf{x}_i, \mathbf{z}_j)[y_i]$.

Table 3: Comparison results on 8-shot text classification.Standard deviations are omitted to save space.

EM-L and R-L maintain sustaining advantages and stability as

the number of retrieval examples varies, which verifies their

stronger supervision signals.

Figure 1: Effects of the number *m* of retrieved examples. The results are average *Accuracy* on the validation set.