Retrieval-Augmented Few-shot Text Classification

Guoxin Yu'?, Lemao Liu®", Haiyun Jiang?, Shuming Shi3, Xiang Ao'%

1 Key Lab of Intelligent Information Processing of Chinese Academy of Sciences, Institute of
Computing Technology. 2 University of Chinese Academy of Sciences. 3 Tencent Al Lab, China.

Z, 0\

1 Motivation 2 Challenges

O For few-shot text classification, training numerous parameters of O Retrieving examples from a narrow space to improve few-shot

PLMs on scarce data is prone to produce over-fitting and unstable learning is still challenging due to limited training data.

generalization. » Static retrieval whose metric is not task-specific (BM25/TF-IDF)

cannot be reliable for retrieving helpful samples for target prediction.
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[0 Retrieval-based methods have shown the capability to incorporate
retrieved memory alongside parameters for better generalization.
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data.

3 Method: Retrieval with EM-L and R-L

O EM-based Loss (EM-L) considers z; as a latent variable and

O Ranking-based Loss (R-L) considers the process of retrieving z;

as a ranking task.

alternates between an E-step and a M-step until convergence. * R-L employs a ranking loss to enhance the consistency

» The Expectation-step computes the conditional probabilities: between Py (y|x, z;)[y;] and P, (z;|x) and provide more direct
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 The Maximization-step updates the parameters by maximizing the

signals to the retriever.
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O Both of EM-L and R-L aim to retrieve examples from a limited
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space more effectively and prioritize more beneficial examples for
downstream tasks.

4 Experiment

O Retrieving examples from the training set is effective in few-shot

5 Analysis

O Higher Kendall's 7° of EM-L and R-L in 16-shot and 8-shot text

scenarios. classification indicates that they could prioritize more helpful

O EM-L and R-L approaches train the retriever more effectively examples according to their corresponding metrics.

than static retrieval and joint learning-based retrieval. Accuracy | 55T2 MR IREC QQP
Kendall's7' | 8ST2 CR  QQP QNLI  RES Vanilla | 80.22 60.71 86.05 64.27
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| SST2 MR CR TREC | QQP QNLI MNLI SNLI | RES LAP | Standard deviations are omitted to save space.
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Table 1: Comparison results on 16-shot text classification. “Vanilla” denotes methods without retrieval, which only . . . . . . — T S—
. f d d a classifier. “Static” and “Joint” . :eval and ioint 1 o based 0 5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20 25
consists oI a sentence encoder and a classifier. tatic” an oint” are static retrieval an JOlnt carning-oase The number m of searched examples The number m of searched examples The number m of searched examples
retrieval, which are introduced in §2. “EM-L” and “R-L” are methods implemented with our proposed new (a) CR (b) QQP (c) LAP

objectives. All the reported results are average Accuracy and the standard deviation in the subscript.

Figure 1: Effects of the number m of retrieved examples. The results are average Accuracy on the validation set.




