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PART
.01 Introduction

• Training numerous parameters of PLMs on scarce data is prone to produce over-
fitting and unstable generalization. 

• Retrieval-based methods  have shown the capability to incorporate retrieved 
memory alongside parameters for better generalization. 
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Conventional few shot text classification

Retrieval-based few shot text classification



PART
.01 Challenge
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Parameters Update
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Suffers from gradient vanishing.
The	gradient	norm	of	the	joint	learning-based	
retriever	exceeds	the	threshold	of	1e−6	for	only	about	
40%	of	the	steps.	EM-L	and	R-L	are	better.

𝑧$ with	high	BM25/TF-IDF	scores	are	limited		



PART
.02 Expectation Maximization-based Loss (EM-L)

1. Expectation-step: 𝑧$ is considered as a latent variable

2. Maximization-step: the parameters are updated by maximizing the 
expected log-likelihood

𝑃/,# 𝑧$ 𝑥, 𝑦 =
𝑃/,# 𝑦|𝑥, 𝑧$ 𝑃# 𝑧$|𝑥

∑$)*+ 𝑃/,# 𝑦|𝑥, 𝑧$ 𝑃# 𝑧$|𝑥
Retrieve m 𝒛𝒋

Conditional probabilities

𝜃12* = 𝑎𝑟𝑔𝑚𝑎𝑥/𝑃 𝑧1 𝑥 𝑦 𝜃1 3 𝑙𝑜𝑔 𝑃 𝑦 𝑥 𝑧1 𝜃

𝑃/,# 𝑦|𝑥 = 𝑃 𝑧1 𝑥 𝑦 𝜃1 3 𝑙𝑜𝑔 𝑃 𝑦 𝑥 𝑧1 𝜃

ℒ𝑜𝑠𝑠&+ =i
1

3

i
$

4

𝑃 𝑧$ 𝑥1, 𝑦 3 𝑙𝑜𝑔𝑃 𝑦 𝑥1, 𝑧$ 𝑐

Alternates between an 
E-step and a M-step 
until convergence



PART
.02 Ranking-based Loss (R-L)

R-L considers the process of retrieving z5 as a ranking task.
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PART
.03 Experiments
• EM-L and R-L approaches train the retriever more effectively than static retrieval 

and joint learning-based retrieval.
• The advantages of EM-L and R-L are more pronounced on challenging tasks.
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• Higher τ ′ of EM-L and R-L indicates that they could prioritize more helpful 
examples according to their corresponding metrics and improve the 
performance by training more effective retrievers. 

• Retrieving examples according to static metrics and joint learning-based 
metrics may result in the inclusion of harmful examples in the final 
performance.
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PART
.03 Experiments
• Auxiliary Experiments on different types of training sets proves the effectiveness 

of EM-L and R-L.
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