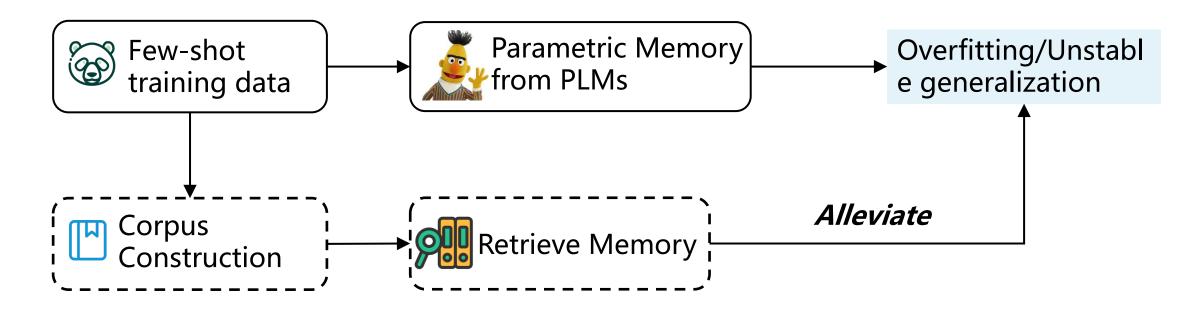
EMNLP 2023

Retrieval-Augmented Few-shot Text Classification

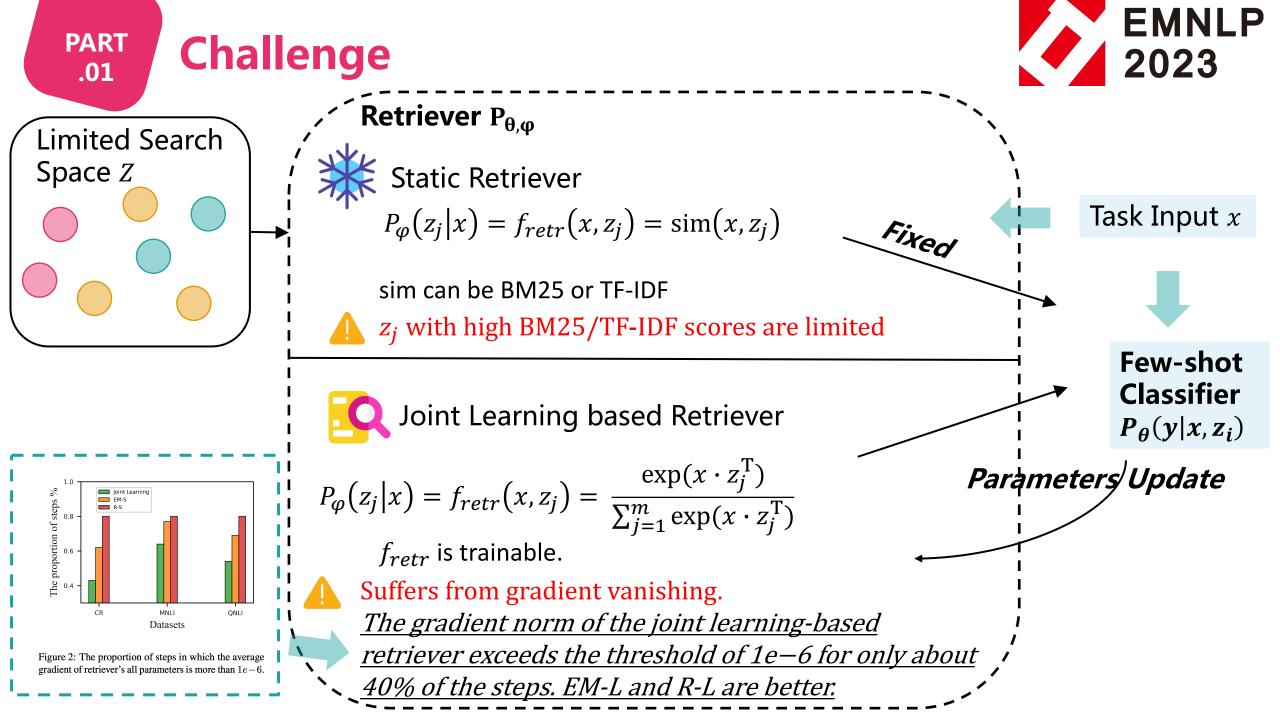
Guoxin Yu^{1,2,3}, Lemao Liu^{4*}, Haiyun Jiang⁴, Shuming Shi⁴, Xiang Ao^{1,3*}


Key Lab of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of Computing Technology, CAS, Beijing 100190, China.
 Peng Cheng Laboratory.
 University of Chinese Academy of Sciences, Beijing 100049, China.
 Tencent Al Lab, China.

THE ACTION OF SCREW

- Training numerous parameters of PLMs on scarce data is prone to produce *overfitting* and *unstable generalization*.
- Retrieval-based methods have shown the capability to incorporate retrieved memory alongside parameters for better generalization.

Retrieval-based few shot text classification


$$P_{\theta,\varphi}(y|x,z_j) = P_{\theta,\varphi}(y|x,z_j)P_{\varphi}(z_j|x)$$

$$P_{\theta}(y|x, z_i) = \operatorname{softmax}(f_{clf}(x \oplus z_j))$$

$$P_{\varphi}(z_j|x) = f_{retr}(x, z_j)$$

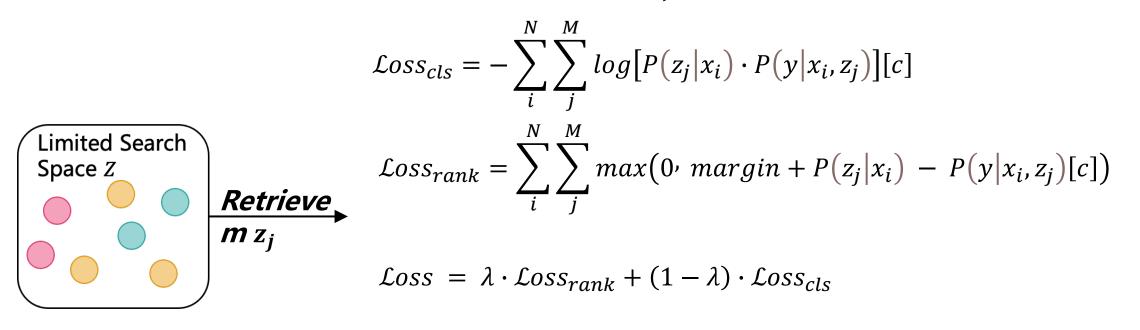
Conventional few shot text classification

$$P(y|x) = \operatorname{softmax}(f_{clf}(x))$$

PART
2
Expectation Maximization-based Loss (EM-L) EMP 2023
1. Expectation-step:
$$z_j$$
 is considered as a latent variable
Conditional probabilities
Space z
 $P_{\theta,\varphi}(z_j|x,y) = \frac{P_{\theta,\varphi}(y|x,z_j)P_{\varphi}(z_j|x)}{\sum_{j=1}^{m} P_{\theta,\varphi}(y|x,z_j)P_{\varphi}(z_j|x)}$

Alternates between an E -step and a M -step until convergence
1. Expectation-step: the parameters are updated by maximizing the

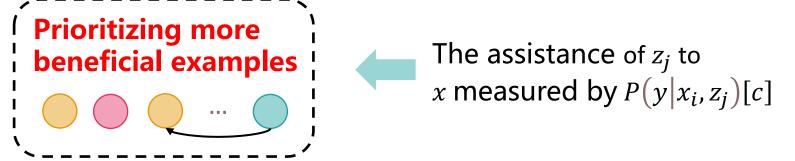
expected log-likelihood


 $P_{\theta,\varphi}(y|x) = P(z_i|x|y|\theta_i) \cdot \log P(y|x|z_i|\theta)$

$$\theta_{i+1} = \arg\max_{\theta} P(z_i|x|y|\theta_i) \cdot \log P(y|x|z_i|\theta)$$

$$\mathcal{L}oss_{em} = \sum_{i}^{N} \sum_{j}^{M} \left[P(z_j|x_i, y) \cdot \log P(y|x_i, z_j) \right] [c]$$

R-L considers the process of retrieving z_i as a ranking task.


Ranking-based Loss (R-L)

Ranking of m examples

PART

.02

- EM-L and R-L approaches train the retriever **more effectively** than static retrieval and joint learning-based retrieval.
- The advantages of EM-L and R-L are more pronounced on challenging tasks.

PART

.03

Experiments

Single Sentence			Sentence Pair			ABSA		Avg.		
SST-2	MR	CR	TREC	QQP	QNLI	MNLI	SNLI	RES	LAP	
Prompt Learning with RoBerta-Large										
$84.84_{(6.80)}$	$77.88_{(7.90)}$	$88.36_{(2.89)}$	$87.20_{(7.70)}$	$67.09_{(6.70)}$	$64.25_{(7.45)}$	$60.69_{(4.08)}$	$64.56_{(4.08)}$	$72.05_{(4.08)}$	$71.81_{(2.88)}$	73.87
	$83.67_{(6.80)}$	$87.06_{(3.84)}$		$68.31_{(7.70)}$			$68.17_{(5.62)}$	$70.95_{(5.46)}$		75.74
$90.71_{(1,20)}$	85.83(2 40)	86.76(6 50)	90.57(4 17)	$67.26_{(4,40)}$	$63.15_{(7.16)}$	$61.95_{(4.65)}$	$67.64_{(5.80)}$	71.07(2.97)	$73.32_{(2.26)}$	75.83
<u>91.31(1.30)</u>	<u>87.58</u> (1.40)	90.00 (0.90)	<u>92.13</u> (1.41)	74.41 (0.74)	67.66 (3.77)	<u>64.85</u> (3.21)	<u>69.52_(3.69)</u>	<u>73.74</u> (3.46)	76.02 (1.90)	<u>78.72</u>
91.58 (1.30)	87.47 (0.09)	<u>89.93</u> (1.70)	92.86 (1.21)	<u>73.79</u> (2.28)	<u>67.62</u> (5.79)	66.04 (3.18)	73.08 (4.59)	76.79 (2.60)	<u>75.59</u> (1.51)	79.46
Fine-tune RoBerta-Large										
$81.59_{(4.50)}$	$73.59_{(9.90)}$	$81.63_{(4.08)}$	$85.95_{(5.57)}$	$61.42_{(8.19)}$	$57.20_{(2.09)}$	$59.90_{(5.72)}$	$59.19_{(5.58)}$	$69.21_{(4.14)}$	$71.06_{(5.11)}$	70.07
$81.99_{(10.8)}$		$82.75_{(5.50)}$	$87.02_{(3.25)}$	$60.23_{(9.60)}$			$62.65_{(5.10)}$	$70.48_{(8.74)}$		70.10
$83.49_{(3.20)}$	$74.89_{(2.90)}$	$80.63_{(5.42)}$	$86.33_{(3.17)}$	$63.50_{(8.08)}$	$57.66_{(2.69)}$	$60.99_{(4.98)}$	$61.01_{(5.80)}$	$70.23_{(3.57)}$	$70.62_{(4.47)}$	70.94
85.38 _(1.30)	75.80 _(2.20)	83.81 _(5.36)	89.36 _(2.64)	<u>65.70</u> (8.17)	$\underline{60.93}_{(1.56)}$	62.24 (3.12)	$\underline{65.25}_{(3.20)}$	<u>71.64</u> (3.36)	72.69 _(3.18)	<u>73.27</u>
<u>84.69</u> (2.29)	<u>75.35</u> (2.20)	<u>83.17</u> (3.22)	<u>88.92</u> (3.81)	70.53 (2.68)	61.37 (0.12)	<u>62.18</u> (1.72)	66.31 (3.30)	73.28 (3.13)	72.69 (3.01)	73.85
	$84.84_{(6.80)}$ $88.60_{(4.10)}$ $90.71_{(1.20)}$ $91.31_{(1.30)}$ $91.58_{(1.30)}$ $81.59_{(4.50)}$ $81.99_{(10.8)}$ $83.49_{(3.20)}$ $85.38_{(1.30)}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{c cccccccccccc} Prom\\ 84.84_{(6.80)} & 77.88_{(7.90)} & 88.36_{(2.89)} & 87.20_{(7.70)}\\ 88.60_{(4.10)} & 83.67_{(6.80)} & 87.06_{(3.84)} & 90.95_{(1.36)}\\ 90.71_{(1.20)} & 85.83_{(2.40)} & 86.76_{(6.50)} & 90.57_{(4.17)}\\ 91.31_{(1.30)} & \underline{87.58}_{(1.40)} & 90.00_{(0.90)} & \underline{92.13}_{(1.41)}\\ 91.58_{(1.30)} & 87.47_{(0.09)} & \underline{89.93}_{(1.70)} & 92.86_{(1.21)}\\ \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Table 1: Comparison results on 16-*shot* text classification. "Vanilla" denotes methods without retrieval, which only consists of a sentence encoder and a classifier. "Static" and "Joint" are static retrieval and joint learning-based retrieval, which are introduced in §2. "EM-L" and "R-L" are methods implemented with our proposed new objectives. All the reported results are average *Accuracy* and the standard deviation in the subscript.

- Higher τ ' of EM-L and R-L indicates that they could prioritize more helpful examples according to their corresponding metrics and improve the performance by training more effective retrievers.
- Retrieving examples according to static metrics and joint learning-based metrics may result in the inclusion of harmful examples in the final performance.

$$\iota = \frac{1}{m(m-1)} \sum_{i
$$sign(p_i, p_j) = \begin{cases} 1, p_i < p_j \\ 0, p_i = p_j \\ -1, p_i > p_j \end{cases}$$$$

Kendall's $ au'$	SST-2	CR	QQP	QNLI	RES
Static	0.5344	0.5837	0.4307	0.5312	0.47857 0.4732
Joint	0.5413	0.6129	0.4776	0.5937	0.4732
EM-L	<u>0.6853</u>	<u>0.6451</u>	0.6265	0.7500	0.6598 0.6125
R-L	0.7442	0.6562	0.6057	0.7185	0.6125

Table 2: *Kendall's* τ' of $P_{\phi}(\mathbf{z}_j | \mathbf{x}_i)$ and $P_{\theta}(y | \mathbf{x}_i, \mathbf{z}_j)[y_i]$.

Experiments

 Auxiliary Experiments on different types of training sets proves the effectiveness of EM-L and R-L.

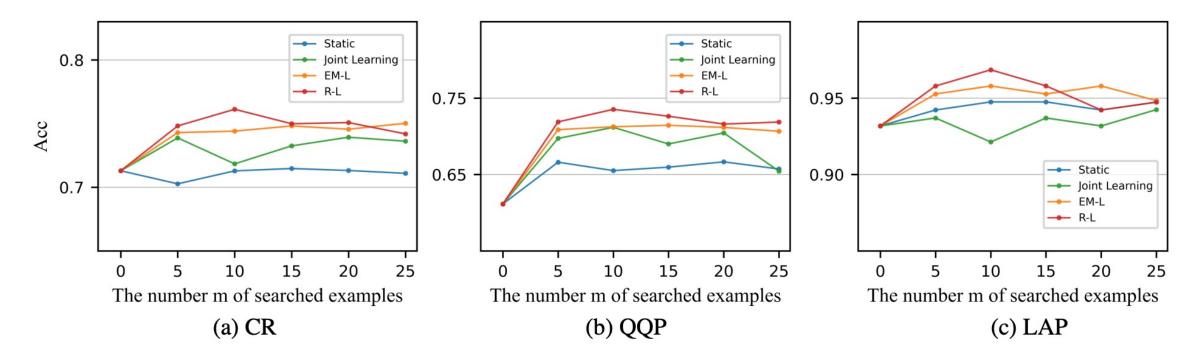

Accuracy	SST-2	MR	TREC	QQP
Vanilla	80.22	60.71	86.05	64.27
Static	76.58	67.51	86.94	60.30
Joint	85.41	71.01	86.57	61.92
EM-L	<u>87.30</u>	78.75	<u>87.52</u>	67.90
R-L	8 9. 79	<u>77.38</u>	88.78	<u>66.77</u>

Table 3: Comparison results on 8-*shot* text classification. Standard deviations are omitted to save space.

2						
	MR	TREC	RES	LAP		
Accuracy						
Vanilla	90.80	96.80	86.53	80.87		
Static	91.40	97.60	87.50	81.19		
Joint	90.90	97.80	87.58	82.13		
EM-L	<u>91.70</u>	98.00	<u>88.04</u>	<u>82.76</u>		
R-L	91.45	98.00	88.4 8	83.22		
Kendall's $ au'$						
Static	0.4340	0.5280	0.5705	0.4310		
Joint	0.5075	0.6580	0.7187	0.7492		
EM-L	0.9195	0.7880	<u>0.8700</u>	<u>0.8564</u>		
R-L	0.9090	0.7160	0.8889	0.8903		

Table 4: Comparison results with full supervision of the original datasets. Standard deviations are omitted to save space.

PART

.03

Experiments

Figure 1: Effects of the number *m* of retrieved examples. The results are average Accuracy on the validation set.

Input: *Startup times* are incredibly long : over two minutes. The sentiment polarity of *startup times* was <mask> .

PART

.03

Experiments

Methods	Predictions	Retrieved Examples	Labels for Retrieved Examples
Static	positive 🗙	The <i>internet speed</i> is spectacular. The sentiment polarity of <i>internet speed</i> was <mask>.</mask>	positive
Joint	positive 🗙	That included the extra Sony Sonic Stage software, the speakers and the subwoofer I got -LRB- that WAS worth the money - RRB-, the bluetooth mouse for my supposedly bluetooth enabled computer, the extended life battery and the <i>docking</i> <i>port</i> . The sentiment polarity of <i>docking port</i> was <mosk>.</mosk>	neutral
EM-L	negative	Its not just slow on the <i>internet</i> , its slow in general. The sentiment polarity of <i>internet</i> was <mask>.</mask>	negative
R-L	negative 🗸	Another thing is that after only a month the <i>keyboard</i> broke and it costed \$175 to send it in to fix it. The sentiment polarity of <i>keyboard</i> was <mask>.</mask>	negative

Figure 3: Case Study. "Input" denotes an input sentence from LAP, "Predictions" represents the predicted sentiment polarities of different methods, and "Retrieved Examples" is the fetched examples with the highest metric in the training set. "Labels for Retrieved Example" denotes sentiment labels of the fetched examples.

Retrieval-Augmented Few-shot Text Classification

Guoxin Yu^{1,2,3}, Lemao Liu^{4*}, Haiyun Jiang⁴, Shuming Shi⁴, Xiang Ao^{1,3*}

THANK YOU

1 Key Lab of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of Computing Technology, CAS, Beijing 100190, China. 2 Peng Cheng Laboratory.

3 University of Chinese Academy of Sciences, Beijing 100049, China.

4 Tencent AI Lab, China.

