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Abstract. Most existing aspect-term level sentiment analysis (ATSA)
approaches combined neural networks with attention mechanisms built
upon given aspect to generate refined sentence representation for bet-
ter predictions. In these methods, aspect terms are always provided in
both training and testing process which may degrade aspect-level anal-
ysis into sentence-level prediction. However, the annotated aspect term
might be unavailable in real-world scenarios which may challenge the
applicability of the existing methods. In this paper, we aim to improve
ATSA by discovering the potential aspect terms of the predicted senti-
ment polarity when the aspect terms of a test sentence are unknown.
We access this goal by proposing a capsule network based model named
CAPSAR. In CAPSAR, sentiment categories are denoted by capsules
and aspect term information is injected into sentiment capsules through
a sentiment-aspect reconstruction procedure during the training. As a
result, coherent patterns between aspects and sentimental expressions are
encapsulated by these sentiment capsules. Experiments on three widely
used benchmarks demonstrate these patterns have potential in exploring
aspect terms from test sentence when only feeding the sentence to the
model. Meanwhile, the proposed CAPSAR can clearly outperform SOTA
methods in standard ATSA tasks.
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1 Introduction

Aspect-level sentiment analysis is an essential building block of sentiment analy-
sis [24]. It aims at extracting and summarizing the sentiment polarities of given
aspects of entities, i.e. targets, from customers’ comments. Two subtasks are
explored in this field, namely Aspect-Term level Sentiment Analysis (ATSA)
and Aspect-Category level Sentiment Analysis (ACSA). The purpose of ATSA
is to predict the sentiment polarity with respect to given targets appearing in the
text. For example, consider the sentence “The camera of iPhone XI is delicate,
but it is extremely expensive.”, ATSA may ask the sentiment polarity towards
the given target “camera”. Meanwhile, ACSA attempts to predict the sentiment
tendency regarding a given target chosen from predefined categories, which may
not explicitly appear in the comments. Take the same sentence as an example,
ACSA asks the sentiment towards the aspect “Price” and derives a negative
answer. In this paper, we aim at addressing the ATSA task.

Conventional approaches [5,15,19] incorporated linguistic knowledge, such as
sentiment-lexicon, syntactic parser, and negation words, etc., and tedious feature
engineering into the models to facilitate the prediction accuracy. Recently, super-
vised deep neural networks, e.g. Recurrent Neural Network (RNN) [36,49], Con-
volution Neural Network (CNN) [21,46] and attention mechanism [1,8,16,28–
30,37,39,43] have shown remarkable successes without cumbersome feature
designing. These models are able to effectively screen unrelated text spans and
detect the sentiment context about the given target.

Despite these efforts, there is still a major deficiency in previous deep neural
network based studies. Specifically, fully labeled aspect terms and their locations
in sentence are explicitly required in both training and test process for recent
methods, which may derive them degrade to sentence-level prediction and would
fail for the test data without such annotations. To acquire aspect terms on pre-
dicted sentences, automatic aspect term detection may lead to error accumula-
tion [45], and manually identifying is inefficient even infeasible. To support more
authentic applications, it calls for an approach that is able to predict potential
aspect-related sentiments based on the sentence and what it has learned from
the training set. To this end, we propose a capsule network-based approach to
remedy the above problem. Compared with previous studies, our method is able
to explore featured sentiments so as to answer the question: “What are the pro-
tagonists of the predicted sentiment polarity?” We access this goal by leveraging
the capsule network1 [34], which has achieved promising results in computer
vision [12,34], natural language processing [7,17,50–52] and recommendation
tasks [23].

The core idea of capsule network is the unit named capsule, which consists
of a group of neurons in which its activity vector can represent the instantiation
parameters of a specific type of entity. The length of activity vector denotes the

1 Here we refer to the capsule network proposed by [34]. Though the models in [44]
and [45] also called capsule network in their papers, they are basically built upon
RNN and attention mechanisms with distinct concepts and implementations.
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probability that the entity exists and its orientation can encode the properties
of the entity. Inspired by that, we propose CAPSAR (CAPsule network with
Sentiment-Aspect Reconstruction) framework by leveraging capsules to denote
sentiment categories and enforce the potential aspect information as the cor-
responding properties. Specifically, during the training process, the sentence is
first encoded with given aspects through a location proximity distillation. Then
the encoded sentence representations are fed to hierarchical capsule layers and
the final capsule layer represents all the concerned sentiment categories. To cap-
ture coherent patterns among aspects and sentimental expressions, the sentiment
capsules are encouraged to encode the information about the aspect terms. We
implement such procedure by reconstructing the aspect with the sentiment cap-
sules. The reconstruction loss is taken as an additional regularization during the
training. During the test phase, if the annotated aspect term is unseen by the
model, CAPSAR can also make prediction and the potential aspect terms in the
sentence could be detected by de-capsulizing the sentiment capsules. We evaluate
the proposed methods on three widely used benchmarks. The results show the
model has potential in unearthing aspect terms for new sentences, and it can
also surpass SOTA baselines in standard aspect-term level sentiment analysis
tasks.

2 Related Work

The related researches in literatures can be categorized as follows, including
sentiment analysis based on neural network, aspect level sentiment classification
and jointing learning methods for aspect level tasks.

Sentiment Analysis Based on Neural Network. Neural network appro-
aches have achieved promising results on both document level [27,41,47] and
sentence level [35] sentiment classification tasks without expensive feature engi-
neering. Some works [10,11] even exploited available interactions between doc-
ument level and sentence level sentiment classification. [44] firstly adopted cap-
sules into document-level sentiment analysis, but their capsule is still based on
RNN and attentions, which is different from the capsule designs in [34].

Aspect Level Sentiment Classification. Aspect level sentiment classifi-
cation is an emerging essential research topic in the field of sentiment anal-
ysis. The purpose is to infer the polarity with respect to aspect phrase or
predefined aspect categories within the text. [36,49] used multiple RNN lay-
ers to jointly model the relations between target terms and their left and
right context. Attention-based methods were brought to this field by many
researches [1,3,8,9,16,20,25,29,37,38,43] to exploit contextual and positional
proximity of aspect terms for prediction and have achieved promising results.
In addition, graph convolution networks (GCN) [48] were also utilized in this
task. However, the final representation may still fail to capture the accurate
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sentiment due to target-sensitive problem [42] or because of the noise in data.
Models based on convolution neural networks [21,46] are alternatives achieving
competitive results, but some key information for modeling local meaning and
overall sentiment may be blurred during the pooling operations. Recently, [45]
proposed to use capsules to perform aspect-category level sentiment analysis.
However as their previous work [44], the basic capsule module is based on atten-
tion mechanisms, which is entirely different with ours. And other works lever-
aging capsule network [7,17] for aspect-level sentiment analysis require explicit
aspect annotation during prediction while our method does not require.

Joint Learning for Aspect Level Tasks. There are some recent joint learning
methods striving to combine different aspect level tasks into a unified learning
process. For example, some studies proposed to extract aspect terms and pre-
dict corresponding sentiment polarities in a pipeline or an integrated model. The
pipeline models [14,33] are extract-then-classify processes and were proposed to
solve the two tasks successively. For integrated models, [22,40] extracted aspect
terms with polarities by collapsed tagging that is a unified tagging scheme to link
two tasks. [26] considered the relationship between the two tasks and attempted
to investigate useful information from one task to another. In addition, some
emerging methods [2,11,31] proposed to extract opinion words in sentences as
auxiliary information to further improve the performance of aspect level senti-
ment classification.

3 The CAPSAR Model

3.1 Model Overview

The overall architecture of CAPSAR is shown in Fig. 1. It starts from an embed-
ding representation of words. In particular, we represent the i-th sentence in a
dataset D with m sentences as {w

(i)
1 , w

(i)
2 , . . . , w

(i)
ni }, where i ∈ [1, . . . , m], ni is

the sentence length, and w(i)
. ∈ W denotes a word where W is the set of vocabu-

lary. The embedding layer encodes each word w
(i)
t into a real-value word vector

x
(i)
t ∈ R

Dx from a matrix M ∈ R
|W |×Dx , where |W | is the vocabulary size and Dx

is the dimension of word vectors. The sentence is encoded by a sequence encoder
to construct a sentence representation. Next, the output of the sequence encoder
is fed to 3-layer capsules. The up-most capsule layer contains C sentiment cap-
sules, where C is the number of sentiment categories. The capsules layers are
communicated with a simple yet effective sharing-weight routing algorithm.

During training, one objective of our model is to maximize the length of senti-
ment capsules corresponding to the ground truth since it indicates the likelihood
of potential sentiments. Meanwhile, these active vectors of the sentiment cap-
sules are used to model the connections between the considered aspect terms and
its corresponding sentiment via an aspect reconstruction. The distance between
the reconstructed aspect representation produced by sentiment capsules and the
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Fig. 1. The network architecture of CAPSAR.

given aspect embedding2 is regarded as an additional regularization. In this
manner, we encourage the sentiment capsules to learn the aspect information as
their active vectors’ orientations. In the test process, a sentiment capsule will be
“active” if its length is above a user-specific threshold, e.g. 0.5. All others will
then be “inactive”. The sentiment prediction of a test sentence will be deter-
mined by the sentiment category associated with the active sentiment capsules.

3.2 Sequence Encoder

In our model, we adopt Bi-GRU as the sequence encoder for simplicity. For i-th
sentence at step t, the corresponding hidden state h

(i)
t are updated as follows.

h
(i)
t =

[−→
h

(i)
t←−

h
(i)
t

]
=

[−−−→
GRU(x(i)

t )←−−−
GRU(x(i)

t )

]
, t = 1, . . . , ni, (1)

where h
(i)
t concatenates hidden states of the t-th word in the i-th sentence

from both directions. Note that more advanced encoders such as LSTM [13]
2 The aspect embedding is calculated by the average of the word embeddings that

form the aspect term.
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or BERT [4], can also be utilized as the sequence encoder. We will introduce
how to combine CAPSAR with BERT in the following part.

3.3 Location Proximity with Given Aspect

In order to highlight potential opinion words that are closer to given aspect
terms, we adopt a location proximity strategy, which is observed effective in [1,
21]. Specifically, we calculate relevance l

(i)
t between the t-word and the aspect3.

l
(i)
t =

{
1 + max(0, α + ni/β − |γ ∗ (k − t)|) t ≤ ni

0 t > ni
(2)

where k is the index of the first aspect word, ni is the sentence length, α, β and
γ are pre-specified constants.

We use l to help the sequence encoder locate possible key words w.r.t the
given aspect.

ĥ
(i)
t = h

(i)
t ∗ l

(i)
t , t ∈ [1, ni], i ∈ [1,m] (3)

Based on Eq. 2 and 3, the salience of words that are distant to the aspect
terms will be declined. Note that such location proximity could be optional in
the test process when the annotated aspect terms are unavailable.

3.4 Capsule Layers with Sharing-Weight Routing

The capsule layers of CAPSAR consist of a primary capsule layer, an interme-
diate capsule layer and a sentiment capsule layer. The primary capsule layer
contains a group of neurons which are constructed by the hidden vectors of the
sequence encoder. Specifically, we simply perform convolutional operation over
h
(i)
ni for i-th sentence and take its output to formulate the primary capsules. As

a result, the primary capsules may contain the sentence coupled with aspect
representations.

Next, the primary capsules are transformed into the intermediate layer and
the subsequent sentiment capsule layer via a sharing-weight routing mechanism.
Unlike the conventional dynamic routing algorithm in [34], our routing algorithm
simultaneously keeps local-proximity information and significantly reduces train-
ing parameters.

The sharing-weight routing algorithm shares the weights between different
children and the same parent. Specifically, we denote the output vector of a
capsule i at level L and the total input vector of a capsule j at level L + 1 as
pi ∈ R

DL and q̃j ∈ R
DL+1 , respectively. We use a unified transformation weight

matrix Wj ∈ R
DL+1×DL for the capsule j at level L+1 to compute the prediction

vectors, i.e. p̂j|i ∈ R
DL+1 , for every possible child capsule i at level L. As a result,

the total input q̃j of capsule j is updated as

q̃j =
∑
i

cij p̂j|i, p̂j|i = Wjpi (4)

3 t is possibly larger than ni because of sentence padding.
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where cij denotes coupling coefficients between capsule i and j and is initial-
ized with equal probability. During the iterative dynamic routing process, cij is
updated to qj · p̂j|i, where qj is the output vector of capsule j computed by the
squash function.

qj =
||q̃j ||2

1 + ||q̃j ||2
q̃j

||q̃j || (5)

Compared with the conventional dynamic routing algorithm, the sharing-
weight routing algorithm clearly reduces the number of parameters and saves
computational cost. For example, if two consecutive capsule layers have M and N
capsules and the dimensions are DL and DL+1 respectively, then the number of
parameters to be learned in this layer will be reduced by (M−1)×N×DL×DL+1

compared with the original routing algorithm in [34].

3.5 Model Training with Aspect Reconstruction

The training objective of this model is two-fold. On one hand, we aim to maxi-
mize the length of the correct sentiment capsules since it indicates the probability
that the corresponding sentiment exists. To this end, we use a margin loss for
every given sentence i

L
(i)
1 = v

(i)
mask max(0,m+ − ||v(i)

prob ||)2 + (1 − v
(i)
mask )max(0, ||v(i)

prob || − m−)2

(6)
Here v

(i)
prob = (||q(i)1 ||, · · · , ||q(i)C ||) where q

(i)
j denotes the output vector of

sentiment capsule j for the sentence i. Each element in such v
(i)
prob indicates the

existence probability of the corresponding sentiment in sentence i; v
(i)
mask is the

mask for sentence i; m+ and m− are hyper-parameters.
On the other hand, we attempt to encourage the sentiment capsules to

capture interactive patterns between the aspect and their corresponding sen-
timents. To this end, we utilize the output vectors of all the sentiment capsules
qj(j ∈ [1, C]) to participate in reconstructing the representation of aspect terms.
Specifically, suppose vmask is a one-hot mask4 whose element representing the
ground truth sentiment is 1, and the rest values are 0. Then we derive two vec-
tors, namely vrecon1 and vrecon2 , through this mask and the sentiment capsules.
First, we mask out all but the output vector of the correct sentiment capsule by
vmask . Then vrecon1 is derived by transforming the masked output vector through
a fully-connect layer. vrecon2 can be derived in a similar manner where 1−vmask

is used as the mask. We force both vrecon1 and vrecon2 have the same dimension
of word embedding, i.e., vrecon1 , vrecon2 ∈ R

Dx , and they are contributed to the
aspect reconstruction during the training.

Suppose a given aspect embedding5 of the sentence i is denoted as v
(i)
asp ,

another training objective in our CAPSAR is to minimize the distance between
4 The dimension of vmask is C.
5 If there are more than one aspect in a same sentence, every aspect will be separately

trained.
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vasp and vrecon1 , and to maximize that between vasp and vrecon2 .

L
(i)
2 = −v(i)

asp

v
(i)
recon1

||v(i)
recon1||

+ v(i)
asp

v
(i)
recon2

||v(i)
recon2||

(7)

Finally, the overall loss is the combination of L
(i)
1 and L

(i)
2 , and a hyper-

parameter λ is used to adjust the weight of L2.

Loss =
∑
i

(L(i)
1 + λL

(i)
2 ) (8)

For prediction, a sentence and an optional aspect in the sentence are fed to
the network and the polarity attached to the sentiment capsule with the largest
length will be assigned.

3.6 Combining CAPSAR with BERT

Our CAPSAR is meanwhile easily extended that utilizes the features learnt from
large-scale pre-trained encoders, e.g. BERT [4]. An upgraded model, namely
CAPSAR-BERT, is achieved by replacing the sequence encoder with BERT in
CAPSAR. The other structures are kept the same. In this manner, the strength
of BERT and the proposed structures could be combined.

4 Experiments

In this section, we verify the effectiveness of CAPSAR. Firstly, we verify the
ability of CAPSAR on perceiving the potential aspect terms when they are
unknown. Secondly, we investigate the performance of CAPSAR on standard
ATSA tasks, where the aspect terms are always known for test sentences. Finally,
we demonstrate the detailed differences of compared methods by case studies.

4.1 Datasets

Three widely used benchmark datasets are adopted in the experiment whose
statistics are shown in Table 1. Restaurant and Laptop are from SemEval2014
Task 46, which contain reviews from Restaurant and Laptop domains, respec-
tively. We delete a tiny amount of data with conflict labels which follows previous
works [37,43]. Twitter is collected by [6] containing twitter posts. Though these
three benchmarks are not large-scale datasets, they are the most popular and
fair test beds for recent methods.

6 http://alt.qcri.org/semeval2014/task4/index.php?id=data-and-tools.

http://alt.qcri.org/semeval2014/task4/index.php?id=data-and-tools
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Table 1. Statistics of datasets.

Dataset Restaurant Laptop Twitter

Train Test Train Test Train Test

Neg. 807 196 870 128 1562 173

Neu. 637 196 464 169 3124 346

Pos. 2164 728 994 341 1562 173

4.2 Compared Methods

We compare our method with several SOTA approaches.
ATAE-LSTM [43] appends aspect embedding with each input word embed-

dings. TD-LSTM [36] employs two LSTMs to model contexts of the targets
and performs predictions based on the concatenated context representations.
IAN [29] interactively learns the context and target representation. Mem-
Net [37] feds target word embedding to multi-hop memory to learn better rep-
resentations. RAM [1] uses recurrent attention to capture key information on
a customized memory. MGAN [8] equips a multi-grained attention to address
the aspect having multiple words or larger context. ANTM [30] adopts atten-
tive neural turing machines to learn dependable correlation of aspects to con-
text. CAPSAR and CAPSAR-BERT are models proposed in this paper.
BERT [4] is also compared to show the improvement of CAPSAR-BERT.

4.3 Experimental Settings

In our experiments, we implement our method by Keras 2.2.4. The word embed-
ding is initialized by Glove 42B [32] with dimension of 300. The max length for
each sentence is set to 75. The batch size of training is 64 for 80 epochs, and
Adam [18] with default setting is taken as the optimizer. For sequence encoder,
we adopt the Bi-GRU with the dropout rate of 0.5 for CAPSAR. The pre-trained
BERT of the dimension of 768 is used in CAPSAR-BERT. For hyper-parameters
in Eq. 2, α, β, and γ are set to be 3, 10 and 1. For the capsule layers, there are 450
primary capsules with dimensions of 50, 30 intermediate capsules with dimen-
sions of 150 and 3 sentiment capsules with dimensions of 300. The default routing
number is 3. For hyper-parameters in the loss function (cf. Eq. 8), we set m+,
m−, λ to be 1.0, 0.1 and 0.003 respectively. Evaluation metrics we adopt are
Accuracy and Macro-F1, and the latter is widely used for recent ATSA tasks
since it is more appropriate for datasets with unbalanced classes.

4.4 Results on Standard ATSA

Main Results. Table 2 demonstrates the performances of compared methods
over the three datasets on the standard ASTA tasks. On such setting, every
aspect term is known to all the models, and each model predicts the correspond-
ing polarity for a given aspect term. Here we only consider the longest sentiment
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Table 2. The average accuracy and macro F1-score on standard ATSA tasks. The
results with ‘*’ are retrieved from the papers of RAM, and other results of baselines
are retrieved from corresponding papers.

Models Restaurant Laptop Twitter

Accuracy F1 Accuracy F1 Accuracy F1

Baselines ATAE-LSTM 0.7720 NA 0.6870 NA NA NA

TD-LSTM 0.7560 NA 0.6810 NA 0.6662∗ 0.6401∗

IAN 0.7860 NA 0.7210 NA NA NA

MemNet(3) 0.8032 NA 0.7237 NA 0.6850∗ 0.6691∗

RAM(3) 0.8023 0.7080 0.7449 0.7135 0.6936 0.6730

MGAN 0.8125 0.7194 0.7539 0.7247 0.7254 0.7081

ANTM 0.8143 0.7120 0.7491 0.7142 0.7011 0.6814

Ablation test CAPSAR w/o R 0.8185 0.7216 0.7484 0.7039 0.7255 0.7067

CAPSAR w/o H 0.8188 0.7226 0.7461 0.7054 0.7298 0.7080

CAPSAR 0.8286 0.7432 0.7593 0.7221 0.7368 0.7231

Combine BERT BERT 0.8476 0.7713 0.7787 0.7371 0.7537 0.7383

CAPSAR-BERT 0.8594 0.7867 0.7874 0.7479 0.7630 0.7511

capsule is active. All the reported values of our methods are the average of 5
runs to eliminate the fluctuates with different random initialization, and the per-
formance of baselines are retrieved from their papers for fair comparisons. The
best performances are demonstrated in bold face. From the table, we observe
CAPSAR has clear advantages over baselines on all datasets. Our model can out-
perform all the baselines by a large-margin on both evaluate measures except
the F1 on Laptop dataset. Meanwhile, we also observe that CAPSAR-BERT
further improves the performance of BERT. It demonstrates the advantages by
combining CAPSAR with advanced pre-trained model.

Ablation Test. Next we perform ablation test to show the effectiveness of
component of CAPSAR. We remove the aspect reconstruction and intermediate
capsule layer, respectively, and derive two degrade models, namely CAPSAR
w/o R and CAPSAR w/o H. Their performance on the three datasets are
exhibited in Table 2, and we can observe the degraded model gives a clear weaker
performance than CAPSAR, without the sentiment-aspect reconstruction. We
conjecture such a regularizer might be able to learn the interactive patterns
among the aspects with the complex sentimental expressions. Meanwhile, we
also observe the advantage of the intermediate capsule layer, which illustrates
the hierarchical capsule layers may be stronger in learning aspect-level sentiment
features.

Case Studies. Then we illustrate several case studies on the results of ATSA
task in Table 3. The predictions of CAPSAR, ANTM, MGAN and RAM are
exhibited. We directly run their available models on test set to get the results.
The input aspect terms are placed in the brackets with their true polarity labels
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Table 3. Prediction examples of some of the compared methods. The abbreviations
Pos, Neu and Neg in the table represent positive, neutral and negative. ✗ indicates
incorrect prediction.

Sentence CAPSAR ANTM MGAN RAM

1. The [chocolate raspberry
cake]Pos is heavenly - not too sweet ,
but full of [flavor]Pos.

(Pos,Pos) (Pos,Neg✗) (Neg✗,Pos) (Pos,Neg✗)

2. Not only was the sushi fresh , they
also served other [entrees]Neu allowed
each guest something to choose from
and we all left happy (try the
[duck]Pos!

(Neu,Pos) (Pos✗,Pos) (Pos✗,Pos) (Pos✗,Pos)

3. The [baterry]Pos is very longer . Pos Neg✗ Pos Neg✗

4. [Startup times]Neg are incredibly
long : over two minutes.

Neg Neg Pos✗ Pos✗

5. However I chose two day
[shipping]Neg and it took over a week
to arrive.

Neu✗ Neu✗ Pos✗ Pos✗

as subscripts. “Pos”, “Neu” and “Neg” in the table represent positive, neutral
and negative, respectively. Different targets are demonstrated by different colors,
such as blue and red, etc. The context which may support the sentiment of targets
is manually annotated and dyed with the corresponding color.

For instance, in the first sentence, one target is “chocolate raspberry cake”
of which the sentiment is positive and the context “is heavenly” supports this
sentiment. In this case, the results of CAPSAR, ANTM, and RAM are correct.
For the second aspect “flavor”, our method and MGAN predict correctly. We
conjecture the reason is the sentence contains turns in its expression, which may
confuse the existing neural network models. Similar observation is achieved on
the second sentence in which only our method can predict different sentiments
for distinct aspects.

Next we discuss a target-sensitive case which is shown by the third and
the fourth sentences in the same table. The word “long” in the exhibited two
sentences indicates entirely opposite sentiment polarities, since the expressed
sentiment also depends on the considered aspects. These cases are challenge
for algorithms to identify the sentiment of each sentence correctly. Among the
demonstrated methods, only our approach can predict them all successfully.
ANTM, as a strong competitor, can predict one of them correctly. The others
fail to give any correct prediction. We do not claim our CAPSAR can perfectly
address the target-sensitive cases, however, the results give an initial encour-
aging potential. We argue that it is the sentiment-aspect reconstruction in our
model which makes aspect and its corresponding sentiment become more cou-
pled, and it might be one of the essential reasons why our model achieves a
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Table 4. The average Precision@1, Recall@5 and mAP on aspect term detection. The
column “Avg. Aspect” and “Avg.SenLen” indicate average number of words on aspect
terms in each sentence and average length of each sentence on the test set, respectively.

Datasets Avg. Aspect Avg. SenLen Pre.@1 Rec.@5 mAP

Restaurant 2.76 16.25 0.8233 0.7884 0.7139

Laptop 2.54 15.79 0.6408 0.7557 0.6173

salient improvement on ATSA task. How to specifically explore capsule networks
for target-sensitive sentiment analysis is out of the scope of this paper.

For error analysis, we find that all the listed models cannot predict correctly
on the last sentence of Table 3. By looking closer to this sentence, we recognize
that the sentiment polarity of this sentence comes from implicit semantics instead
of its explicit opinion words. It indicates implicit semantics inference behind
sentences is still a major challenge of neural network models, even exploiting
capsule networks.

4.5 Results on Aspect Term Detection

Next, we investigate whether CAPSAR can detect potential aspect terms when
they are unknown during the test. We use the trained model to predict every
test sentence on Restaurant and Laptop datasets but we intentionally conceal
the information about the aspect terms in the input. In another word, the model
is only fed the test sentence without any other additional input. Then we de-
capsulize the sentiment capsule whose length is longer than 0.5 and compute
normalized dot-product between its reconstructed vector and every word embed-
ding in the test sentence. These dot-products can be regarded as the probabilities
representing the possibility of the word to be part of an aspect term.

A sentence may simultaneously contain multiple sentiments (c.f. the 2nd sen-
tence in Table 3), which derives more than one sentiment capsule whose length
surpasses 0.5. As a result, we detect the potential aspect terms for every active
sentiment capsule, respectively, in our evaluation. There could be more than
one aspect terms for each sentiment category in the same sentence (c.f. the 1st
sentence in Table 3). Hence we compute Precision@k, Recall@k and mean Aver-
age Precision (mAP) to comprehensively verify the effectiveness of CAPSAR on
aspect term detection.

We retrain our CAPSAR five times and use the trained model to detect
aspect terms on the test set. Table 4 shows the average results. From the table
we observe that CAPSAR shows an encouraging ability to extract aspect terms
even though they are unknown in new sentences. Meanwhile, the model achieves
better performance on Restaurant dataset. We conjecture the reason is the Lap-
top dataset has more complicated aspect terms such as “Windows 7”.

Finally, we visualize two test sentences in this evaluation shown as Fig. 2
and 3. Figure 2 demonstrates a case that only one sentiment capsule is active.
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Fig. 2. The visualization of aspect term detection when single sentiment capsule is
active. The real aspect terms are marked in bold face in the sub-figure (b).

Fig. 3. The visualization of aspect term detection when multiple sentiment capsules are
active. The real aspect terms are marked in bold face in the sub-figure (b), respectively.

The sentiment capsule length is exhibited in Fig. 2(a), and the corresponding
dot-products are demonstrated as Fig. 2(b). The darker the color in Fig. 2(b),
the higher value the dot-product is, which means the corresponding word is more
likely to be a part of an aspect term. From this figure, we observe that the two real
aspect terms hold much higher weights compared with the other words, which
derives a correct detection. We can also obtain similar observations from the case
shown as Fig. 3 in which two sentiment capsules are active. In this case, there are
two aspect terms, namely “food” and “service”. From the sentence, we observe
that this review has a strong negative sentiment towards on “service” while has
a neutral attitude to “food”. After we de-capsulize the active sentiment capsules,
we find both “service” and “food” are perceived by the negative capsule because
of the overall negative sentiment of the whole sentence. While in the neutral
capsule, only the corresponding aspect term “food” is highlighted.

5 Conclusion

In this paper, we proposed, CAPSAR, a capsule network based model for improv-
ing aspect-level sentiment analysis. The network is piled up hierarchical capsule
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layers equipped with a shared-weight routing algorithm to capture key features
for predicting sentiment polarities. Meanwhile, the instantiation parameters of
sentiment capsules are used to reconstruct the aspect representation, and the
reconstruction loss is taken as a part of the training objective. As a consequence,
CAPSAR could further capture the coherent patterns between sentiment and
aspect information and is able to detect potential aspect terms by parsing the
sentiment capsules when these aspect terms are unseen. Experimental results on
three real-world benchmarks demonstrate the superiority of the proposed model.
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