Discovering Protagonist of Sentiment with Aspect Reconstructed Capsule Network

Chi Xu¹, Hao Feng², Guoxin Yu¹, Min Yang³, Xiting Wang⁴, Yan Song⁵, and Xiang Ao^{1*}

- 1 Institute of Computing Technology, CAS, Beijing, China.
- 2 University of Electronic Science and Technology of China.
- 3 Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, China.
- 4 Microsoft Research Asia.
- 5 The Chinese University of Hong Kong (Shenzhen).

CONTENTS

DASFAA2021

RART ON E

Introduction

Definition

As an essential sub-task of aspect-level sentiment analysis, Aspect-Term level Sentiment Analysis (ATSA) aims to predict the sentiment polarity with respect to given targets appearing in the text.

ATSA may ask the sentiment polarity towards the given target "camera".

Existing Methods

> Conventional approaches incorporated linguistic knowledge into the models.

Conventional approaches incorporated linguistic knowledge, such as sentimentlexicon, syntactic parser, and negation words, etc., and feature engineering into the models to facilitate the prediction accuracy.

Aspect: memory Sentiment: Negative

DASFAA2021

Existing Methods

> Methods using supervised deep neural networks.

Mao, Li, Wang, Zhang, Peng, He and Wang: Aspect-Based Sentiment Classification with Attentive Neural Turing Machines. In(IJCAI2019)

DASFAA2021

Challenges

Fully labeled aspect terms and their locations in sentence are explicitly required in both training and test process for recent methods.

Du, Sun, Wang, Qi, Liao, Xu, Liu: Capsule Network with Interactive Attention for Aspect-Level Sentiment Classification. In: EMNLP (2017)

DASFAA2021

Challenges

Fully labeled aspect terms and their
locations in sentence are explicitly
required in both training and test process
for recent methods.

Ma, D., Li, S., Zhang, X., Wang, H.: Interactive attention networks for aspect-level sentiment classification. In: IJCAI (2017)

DASFAA2021

Challenges

However, the labeled aspect terms are often difficult to obtain in the practical applications.

1 photo	
Ok so first off- the stars:	food here is REALLY good! No doubt about it. But let me explain why I took off 2
1st star removed from it's cut that i can barely see the	because of the gyro. There was literally just TWO pieces of meat, and you can tell t wasn't from a spit. It looks precut to me if you look at my photo (attached), you e meat. This should be a cucumber wrap with a bit of meat, not a gyro.
Secondly, the cas her about this. So	nier Muna was rude and gave us an attitude when we went up to her and asked much for customer service! Smh.
There was a gentl the owner or mar good!! We would' him instead of the	eman who gave us complimentary special French fry dipping sauce. I assume he's lager. He was very kind and came up to us to offer us this sauce. It was REALLY ve gotten more but he stepped outside of the restaurant. I feel like I we went up to a cashier he would have given better customer service.
Anyway, I'd go ba	ck because the gentleman was nice, and the food was good, but I will be getting

Challenges

To acquire aspect terms on predicted sentences, automatic aspect term detection may lead to error accumulation, and manually identifying is inefficient even infeasible.

Caspule Network

Capsule Network is first proposed for image processing. The length of a capsule denotes the probability that the entity exists. And its orientation can encode the properties of the entity, which can be used for the reconstruction of the initial entities.

Contributions

- Inspired by the previous capsule network, we propose CAPSAR (CAPsule network with Sentiment-Aspect Reconstruction) framework by leveraging capsules to denote sentiment categories and enforce the potential aspect information as the corresponding properties.
- To save computational cost, we propose a share-weight routing for capsule network and devise a reconstruction mechanism to reconstruct aspect terms with sentiment capsules.
- We evaluate the proposed model in three widely used benchmarks. The results show the model can surpass SOTA baselines in standard ATSA tasks.

RART TWO Model

PART TWO Model

DASFAA2021

Model Overview

The overall architecture is shown in the right figure. It starts with an embedding representation of words in the given sentence. Then the word embeddings are encoded by a sentence encoder to construct a sentence representation.

PART TWO Model

DASFAA2021

Model Overview

Next, the output of the sequence encoder is fed into a 3-layer capsule network. The up most capsule layer contains three sentiment capsules, which will be used to reconstruct aspect terms during aspect reconstruction.

PART TWO Model

DASFAA2021

RART THREE

Experiment

PART THREE Experiment

Dataset

Three widely used benchmark datasets are adopted in the experiment. Though these three benchmarks are not large-scale datasets, they are the most popular and fair test beds for recent methods.

Dataset Restaurant			Laptop		Twitter	
	Train	Test	Train	Test	Train	Test
Neg.	807	196	870	128	1562	173
Neu.	637	196	464	169	3124	346
Pos.	2164	728	994	341	1562	173

PART THREE Experiment

Main Results

We compare our method with several SOTA approaches. From the following table, we can observe that our proposed model has clear advantages over baselines except the F1 score on Laptop. In addition, the CAPSAR-BERT further improves the performance of BERT.

		Restaurant		Laptop		Twitter	
	Models	Accuracy	F1	Accuracy	$\mathbf{F1}$	Accuracy	F1
	ATAE-LSTM	0.7720	NA	0.6870	NA	NA	NA
	TD-LSTM	0.7560	NA	0.6810	NA	0.6662^{*}	0.6401^{*}
	IAN	0.7860	NA	0.7210	NA	NA	NA
Decelines	MemNet(3)	0.8032	NA	0.7237	NA	0.6850^{*}	0.6691^{*}
Dasennes	RAM(3)	0.8023	0.7080	0.7449	0.7135	0.6936	0.6730
	MGAN	0.8125	0.7194	0.7539	0.7247	0.7254	0.7081
	ANTM	0.8143	0.7120	0.7491	0.7142	0.7011	0.6814
Ablation Test	CAPSAR w/o R	0.8185	0.7216	0.7484	0.7039	0.7255	0.7067
	CAPSAR w/o H	0.8188	0.7226	0.7461	0.7054	0.7298	0.7080
	CAPSAR	0.8286	0.7432	0.7593	0.7221	0.7368	0.7231
Combine BERI	BERT	0.8476	0.7713	0.7787	0.7371	0.7537	0.7383
	CAPSAR-BERT	0.8594	0.7867	0.7874	0.7479	0.7630	0.7511

PART THREE Experiment

DASFAA2021

Case Study

	<u></u>			
Sentence	CAPSAR	ANTM	MGAN	RAM
1. The [chocolate raspberry cake] _{Pos} is heavenly - not too sweet , but full of [flavor] _{Pos} .	(Pos,Pos)	(Pos,Neg ≭)	(Neg ⊁ ,Pos)	(Pos,Neg≭)
2. Not only was the sushi fresh , they also served other $[entrees]_{Neu}$ allowed each guest something to choose from and we all left happy (try the $[duck]_{Pos}!$	(Neu,Pos)	(Pos ≭ ,Pos)	(Pos ≭ ,Pos)	(Pos ≭ ,Pos)
3. The $[baterry]_{Pos}$ is very longer.	Pos	Neg X	Pos	Neg X
4. [Startup times] _{Neg} are incredibly long : over two minutes.	Neg	Neg	Pos X	Pos X
5. However I chose two day $[shipping]_{Neg}$ and it took over a week to arrive.	Neu X	Neu X	Pos X	Pos X
	·			

RART FOUR Conclusion

PART FOUR Conclusion

- Model: we proposed a CAPSAR which is piled up hierarchical capsule layers equipped with a shared-weight routing algorithm to capture key features for predicting sentiment polarities.
- Experiment: experimental results on three real-world benchmarks demonstrate the effectiveness of the proposed model.

Thanks for listening~

Discovering Protagonist of Sentiment with Aspect Reconstructed Capsule Network Chi Xu¹, Hao Feng², **Guoxin Yu**¹, Min Yang³, Xiting Wang⁴, Yan Song⁵, and Xiang Ao^{1*}

Institute of Computing Technology, CAS, Beijing, China.
University of Electronic Science and Technology of China.
Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, China.
Microsoft Research Asia.
The Chinese University of Hong Kong (Shenzhen).

