

Making Better Use of Training Corpus: Retrieval-based Aspect Sentiment Triplet Extraction via Label Interpolation

Guoxin Yu^{1,2}, Lemao Liu^{3*}, Haiyun Jiang³, Shuming Shi³, Xiang Ao^{1,2*}
1 Key Lab of IIP of Chinese Academy of Sciences, Institute of Computing Technology.
2 University of Chinese Academy of Sciences. 3 Tencent Al Lab, China.

Aspect Sentiment Triplets Extraction (ASTE) aims to extract all triplets containing aspect terms, opinion terms and their sentiment polarities.

2 Motivation

It is promising to introduce inter-sentence information into some ² challenging cases, where the intra-sentence information is insufficient.

Long distance The food is spicy and delicious, including the shrimp appetizer, the cod, and the scallop roll. Uncommon Aspect Terms

We first construct a knowledge store and detect all candie opinion term. *M* = {⟨*Kⁱ*, *Vⁱ*⟩|*i* ∈ [1, |*M*|]}

$$E_A = h_{A_1} \oplus h_{A_2} \oplus f_{\text{span}}(A_2 - A_1 + 1), \quad K = E_A \oplus E_O,$$

$$E_O = h_{O_1} \oplus h_{O_2} \oplus f_{\text{span}}(O_2 - O_1 + 1), \quad V = f_{\text{sentiment}}(y)$$

> We pre-train the retriever by contrastive learning, which prompts the retrieved triplets have both semantic and sentiment similarities.

 $\mathcal{L}_{\text{pre}} = d(A, O; A', O')^2 - \left(1 - d(A, O; A'', O'')\right)^2$

For each candidate pair, we retrieve semantic similar triplets from the store according to a relevance score.

 $d(A, O; A^i, O^i) = K^\top \mathbf{W} K^i,$

We interpolate their label information into the augmented representation of the candidate pair to predict the sentiments.

$$\begin{split} h(A,O) &= (K + \sum_{l=1}^{L} \alpha_l K^l) \oplus \sum_{l=1}^{L} \alpha_l V^l, \\ \alpha_l &= \frac{\exp\left(d(A,O;A^l,O^l)\right)}{\sum_{j=1}^{L} \exp\left(d(A,O;A^j,O^j)\right)}, \end{split}$$

$$\begin{split} P_{\text{ext}}(y|A,O,\mathbf{X}) &= \text{softmax}(F(h(A,O)))[y],\\ y &\in \{\text{positive, negative, neutral, none}\}, \end{split}$$

> We jointly train the retriever and triplets extractor:

$$\begin{split} \mathcal{L}_{\text{det}} &= -\sum_{\mathbf{X}} \sum_{S \in \mathcal{S}(\mathbf{X})} \log P_{\text{det}}(c|S,\mathbf{X}), \\ \mathcal{L}_{\text{ext}} &= -\sum_{\mathbf{X}} \sum_{A,O \in \mathcal{S}(\mathbf{X})} \log P_{\text{ext}}(y|A,O,\mathbf{X}), \end{split}$$

 $\mathcal{L} = \mathcal{L}_{\text{det}} + \alpha \cdot \mathcal{L}_{\text{ext}},$

3 Challenges

ASTE has challenges when adapting retrieval-augmented methods:

- its purpose includes predicting the sentiment polarities and it is usually aspect-dependent;
- <u>triplets with similar semantic similarities may have conflict</u> <u>sentiment polarities.</u>

Existing retrieval-augmented methods may fetch triplets with high semantic similarity but opposite sentiment, giving a false guidance.

The ordered cocktail from here was	spicy that I could barely drink it.
↓ Deduce (cocktail, spicy, negative) →	(scallop roll, spicy, negative) 🗙

5 Experiment

Comparison on ASTE-DATA-V1

Model	Res14		Lap14		Res15		Res16	
	Pair	Triplet	Pair	Triplet	Pair	Triplet	Pair	Triplet
WhatHowWhy♦	56.10	51.89	53.85	43.50	56.23	46.79	60.04	53.62
CMLA+ [◊]	48.95	43.12	44.10	32.90	44.60	35.90	50.00	41.60
RINANTE+ [♦]	46.29	34.03	29.70	20.00	35.40	28.00	30.70	23.30
Unified+ [♦]	55.34	51.68	52.56	42.47	56.85	46.69	53.75	44.51
Dual-MRC [♦]	74.93	70.32	63.37	55.58	64.97	57.21	75.71	67.40
Generative	77.68	72.46	66.11	57.59	67.98	60.11	77.38	69.98
GAS [♯]	-	70.20	-	54.50	-	59.10	-	65.00
LEGO [#]	-	72.60	-	59.50	-	63.20	-	71.50
$\overline{JET}_{M=6}^{t} \nabla$		60.41		46.65		53.68		63.41
$JET_{M=6}^{o} \nabla$	-	63.92	-	50.00	-	54.67	-	62.98
SPAN*	78.62	73.96	69.48	60.59	71.56	64.50	78.85	70.48
RLI(Ours)	79.92	74.98	70.27	61.97	72.66	65.71	81.29	73.33

Comparison on ASTE-DATA-V2 Ablation test Dev F1 Lap14 R F1 Res15 R F1 66.85 67.55 R F1 w/o sentiment WhatHowWhy 0 43.24 63.66 51.46 37.38 50.38 42.87 48.07 57.51 52.32 46.96 64.24 54.21 w/o pre-training full model 67.12 68.00 63.59 73.44 68.16 57.84 **59.33** 58.58 54.53 63.30 58.59 63.57 71.98 67.52 DMDC 61.90 RI GASE 72.16 60.78 6210 70 10 62.55 63.07 58.25 60.56 54.26 41.07 46.75 60.88 42.68 50.18 65.65 OTE-MTU 54 28 59 42 70.83 GTS[♦] 67.76 67.29 67.50 57.82 51.32 54.36 62.59 57.94 60.15 66.08 69.91 67.93 w/o sentimen 71.54 JET^t_M 63.44 54.12 59.41 53.53 43.28 47.86 **68.20** 42.89 52.66 65.28 51.95 63.83 71.24 72.21 JET^o_{M=6} SPAN ♦ 70.56 55.94 62.40 55.39 47.33 51.04 64.45 51.96 57.53 70.42 58.37 63.83 72.89 70.89 71.85 63.44 55.84 59.38 62.18 64.45 63.27 69.45 71.17 70.26 70.4 EMC-GCN [∇] 71.21 72.39 71.78 61.70 56.26 58.81 61.54 62.47 61.93 65.62 71.30 68.33 w/o centiment 71.44 70.75 73.04 77.46 71.97 74.34 63.32 57.43 60.96 60.08 70.66 65.41 70.50 74.28 72.34 RLI (Ours)

Inference Results Analysis

The number of retrieved triplets

0.70

0.66

Sensitivity Analysis

