

Making Flexible Use of Sub-tasks: A Multiplex Interaction Network for Unified Aspect-based Sentiment Analysis

Guoxin Yu^{1,2}/Xiang Ao^{1,2,*},Ling Luo^{1,2}, Min Yang³, Xiaofei Sun⁴, Jiwei Li⁴, Qing He^{1,2}

- 1 Key Lab of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of Computing Technology, CAS, Beijing 100190, China.
- 2 University of Chinese Academy of Sciences, Beijing 100049, China.
- 3 Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, China.
- 4 Shannon.AI, China.

INTRODUCTION

Unified Aspect-based Sentiment Analysis (ABSA)

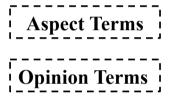
ABSA generally consists of three sub-tasks, namely, Aspect Terms Extraction (ATE), Opinion Terms Extraction(OTE) and Aspect Sentiment Classification.

ATE extracts the aspect terms with obvious emotion inclinations.

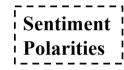
OTE aims to extract the opinion terms that express emotions.

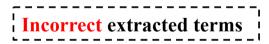
ASC predicts the sentiment polarities of aspect terms in the given sentence.

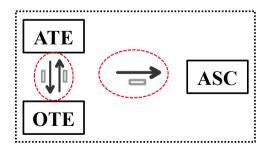
INTRODUCTION


Pipeline Methods for Unified ABSA

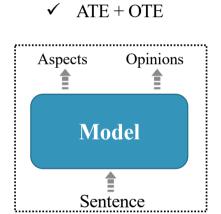
Integrate existing method for separate tasks into a pipeline model.

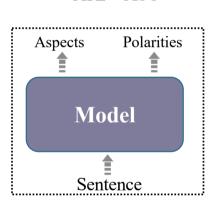

Online Review

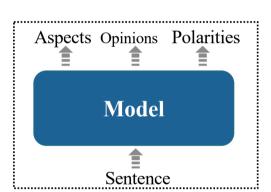




Key problems:


Interactions are ignored!




Joint Methods for Unified ABSA

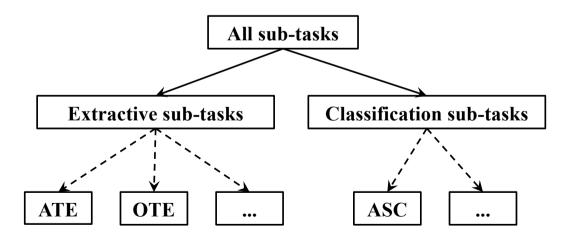
Incorporate different number of sub-taks and formulate them as sequence labeling tasks.

 \checkmark ATE + ASC

 \checkmark ATE + OTE + ASC

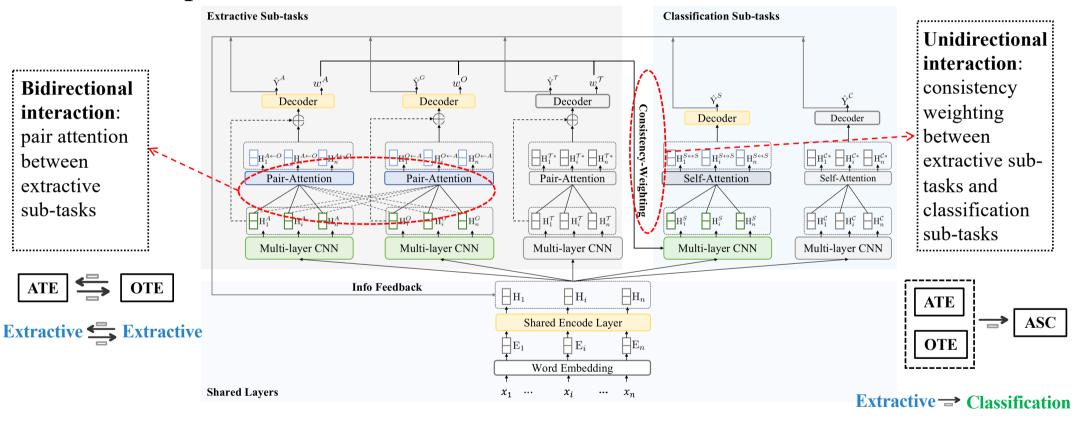
Cannot benefit from OTE or ASC even though there exists corresponding annotations. (Interactive relations are not appropriately explored.)

Fragile when any of the sub-tasks is absent.


INTRODUCTION

Challenge

Manage ABSA with arbitrary number of sub-tasks and allow sub-tasks to share interactive information in a unified learning manner.


Solutions

We divide the sub-tasks of ABSA into two categories and design task-agnostoc mechanisms to exploit interactions between different types of sub-tasks.

A Multiplex Interaction Network

Loss Function

We use cross-entropy losses for all sub-tasks:

$$\mathcal{L}^{A} = -\frac{1}{N} \sum_{i=1}^{N} \frac{1}{n_i} \sum_{j=1}^{n_i} (y_{ij}^{A} \cdot \log(\hat{y}_{ij}^{A})),$$

> OTE
$$\mathcal{L}^{O} = -\frac{1}{N} \sum_{i=1}^{N} \frac{1}{n_i} \sum_{j=1}^{n_i} (y_{ij}^{O} \cdot \log(\hat{y}_{ij}^{O})),$$

$$\mathcal{L}^{S} = -\frac{1}{N} \sum_{i=1}^{N} \frac{1}{n_{i}} \sum_{j=1}^{n_{i}} (y_{ij}^{S} \cdot \log(\hat{y}_{ij}^{S})),$$

Main Results

SemEval 2014 Task4

Dataset		Sentence	Opinion	Aspect			
Dataset		Schlence	Opinion	Pos	Neu	Neg	
Res14	Train	3,044	3,484	2,164	807	637	
	Test	800	1,008	728	196	196	
Lap14	Train	3,048	2,504	994	870	464	
	Test	800	674	341	128	169	

ATE + ASC

Model	,.	Res14			Lap14		
Woder	AE-F1	AS-F1	O-F1	AE-F1	AS-F1	O-F1	
DECNN-TNet*	82.79	70.45	65.80	79.38	68.69	57.39	
DECNN-TCaps*	82.79	71.77	66.84	79.38	69.61	57.71	
PIPELINE-MIN	84.00	71.75	68.36	78.43	<u>71.45</u>	<u>59.19</u>	
MNN*	85.84	67.93	-	79.91	58.30	-	
E2E-ABSA*	83.92	68.38	66.60	77.34	68.24	55.88	
DOER*	84.63	64.50	68.55	80.21	60.18	56.71	
MIN	<u>84.80</u>	73.91	69.57	<u>79.94</u>	71.57	60.39	

ATE + OTE + ASC

Model		Res14			Lap14			
1410401	AE-F1	OE-F1	AS-F1	O-F1	AE-F1	OE-F1	AS-F1	O-F1
CMLA-TNet*	81.91	83.84	69.69	64.49	77.49	76.06	68.30	55.94
CMLA-TCaps*	81.91	83.84	71.32	65.68	77.49	76.06	69.49	56.30
IMN*	84.01	85.64	71.90	68.32	78.46	78.14	69.92	57.66
RACL*	85.37	85.32	<u>74.46</u>	<u>70.67</u>	<u>81.99</u>	<u>79.76</u>	<u>71.09</u>	<u>60.63</u>
MIN	<u>85.27</u>	86.85	76.39	70.92	82.24	80.56	72.60	61.35
IMN-BERT	84.06	85.10	75.67	70.72	77.55	81.00	75.56	61.73
RACL-BERT	86.38	87.18	81.61	75.42	81.79	79.72	73.91	63.40
MIN-BERT	87.91	<u>85.66</u>	80.48	76.02	83.22	81.80	<u>74.95</u>	64.83

EXPERIMENT

Flexibility

Different combinations of sub-tasks.

	Re	s14	Lap14			
ATE+OTE	AE-F1	OE-F1	AE-F1	OE-F1		
IMN	84.83	86.32	78.31	77.58		
RACL	85.47	86.48	81.83	78.19		
MIN	85.78	86.71	<u>81.74</u>	78.29		
OTE+ASC	OE-F1	AS-F1	OE-F1	AS-F1		
IMN	NA	NA	NA	NA		
RACL	81.27	63.16	79.32	65.45		
MIN	86.14	71.15	79.58	68.13		
ATE+ASC	AE-F1	AS-F1	AE-F1	AS-F1		
IMN	84.78	70.46	79.22	69.65		
RACL	85.66	70.78	79.76	68.87		
MIN	84.80	73.91	79.94	71.57		

Ablation Test and Case Study

Model	Res14	Lap14
Full Model	70.92	61.35
w/o Pair-attention	69.82	59.37
w/o Consistency-weighting	69.46	60.84
w/o Info Feedback	69.07	59.17
w/o Self-Attention	67.63	57.03

Case	IMN		RACL		MIN	
Case	ATE,ASC	OTE	ATE,ASC	OTE	ATE,ASC	OTE
(1) If you 're craving some [serious] [indian food] _{pos} and desire a [cozy] [ambiance] _{pos} , this is quite and [exquisite] choice.	[indian food] _{pos} [ambiance] _{pos} [choice] _{pos}	[serious] [cozy] [exquisite]	[indian food] _{pos} [ambiance] _{pos} [choice] _{pos}	[craving X] [serious] [cozy] [exquisite]	[indian food] _{pos} [ambiance] _{pos}	[serious] [cozy] [exquisite]
(2) The [fajita] _{neg} we tried was [tasteless] and [burned] and the [mole sauce] _{neg} was way [too sweet].	[fajita] _{neg} [mole sauce] _{pos} X	[tasteless] [burned] [too sweet]	[fajita] _{neg} [mole sauce] _{neu} X	[tasteless] [burned] [sweetX]	[fajita] _{neg} [mole sauce] _{neg}	[tasteless] [burned] [too sweet]

Making Flexible Use of Sub-tasks: A Multiplex Interaction Network for Unified Aspect-based Sentiment Analysis

Guoxin Yu^{1/2}, Xiang Ao^{1,2,*},Ling Luo^{1,2}, Min Yang³, Xiaofei Sun⁴, Jiwei Li⁴, Qing He^{1,2}

- 1 Key Lab of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of Computing Technology, CAS, Beijing 100190, China.
- 2 University of Chinese Academy of Sciences, Beijing 100049, China.
- 3 Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, China.
- 4 Shannon.AI, China.

{yuguoxin20g,aoxiang,luoling18s,heqing}@ict.ac.cn min.yang@siat.ac.cn {xiaofei sun,jiwei li}@shannonai.com

